Nucleation of Continuous, Conformal and Smooth Ultrananocrystalline Diamond (UNCD) Thin Films

Nevin Naguiba, Jeffrey Elamb, James Birrellc, Jian Wanga, Chou Liua, Orlando Aucielloa and John Carlislea,c a Materials Science Division, Argonne National Laboratory b Energy System Division, Argonne National Laboratory c Advanced Diamond Technologies, Inc.

Motivation

- . The ultimate nanoscale structure of UNCD thin films give rise to a number of unique materials properties. The UNCD bulk and surface structure affect its mechanical, tribological, electrical/ thermal transport, and electrochemical properties.
- . In order to utilize UNCD thin films in different applications such as tribological and biomedical applications, careful investigation of its surface chemistry and its roughness must be done.

What is UNCD?

- 3-5 nm grains.
- High-energy grain boundaries (GB).
- 95 % sp³ bonding structures and 5% sp2 and other.
- Roughness = ~24nm

Computer simulation of **UNCD Grain Boundaries**

Cross Sectional Image of UNCD Film on Silicon (Si) Substrate

Limitation of Standard Seeding Methods

Ultrasonic seeding on Si (100), 20 min growth leads to very poor nucleation density and poor uniformity (UNCD thickness = ~70nm).

Use Tungsten as a seed layer for higher UNCD nucleation

Tungsten (W) was deposited by two different techniques: Magnetron Sputtering and Atomic Layer Deposition (ALD)

Comparison of different UNCD Films

UNCD on plain Si (no W)

UNCD on Sputt. W (~105Å W thickness)

UNCD on ALD W (~100Å W thickness)

Future Directions

- Investigation of the W-UNCD interface and the chemical nature of the nucleation growth of UNCD on W (why?)
- Investigation of other seeding mechanisms (such as mechanical seeding, dielectrophoresis seeding, and "Rotter" seeding) and how the seeding mechanism can affect roughness
- Investigate the effect of introducing Silicon (disilane gas) during the microwave plasma deposition. The end result will range from Sidoped UNCD (p-type or n-type SiC) to nanostructured SiC/UNCD heterostructure composites, to possibly achieving the synthesis of nanocrystalline SiC films.

UNCD Potential Applications

UNCD Cantilever

